ymt=[A]&

Zv= [A]&

Zv= [A]&

Example:

The reaction of butyl-bromide (CH₃)₃CBr with water is represented by the equation:

$$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$$

The reaction of butyl-bromide (CH_3) ₃ CBr with water is represented by the equation:					
$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$					
$(CH_3)_3CBr + H_2O \rightarrow (CH_3)_3COH + HBr$ The following data were obtained from three experiments using the method of initial rates: $[Initial\ [(CH_3)_3CBr]\ mol\ L^{-1}\ m$					
Rober K (CH3) 3 CBC) Com		Initial [(CH ₃) ₃ CBr] mol L ⁻¹	Initial [H ₂ O] mol L ⁻¹	Initial rate mol L ⁻¹ min ⁻¹	
	Experiment 1	5.0 x 10 ⁻²	2.0 x 10 ⁻²	2.0×10^{-6}	
	Experiment 2	5.0 x 10 ⁻²	4.0 x 10 ⁻²	2.0×10^{-6}	
	Experiment 3	1.0 x 10 ⁻¹	4.0 x 10 ⁻²	4.0 x 10 ⁻⁶	

- a. What is the order with respect to $(CH_3)_3CBr$?
- b. What is the order with respect to H_2O ?
- c. What is the overall order of the reaction?
- d. Write the rate equation.
- e. Calculate the rate constant k for the reaction, including units.

f. What is the half life of this reaction?	
5/1 2×1040= R(5×6)2) (8×104) 1 Ex2 = 2×10-0= X(5×10-2) (4×10-2) 1 = 12-12×10-6= X(5×10-2) (4×10-2)	2n =Ø
$E \times 3 = 4 \times 10^{-6} = 1/(1 \times 10^{-1})^{-4} (4 \times 10^{-2})^{-2}$ $E \times 2 = 2 \times 10^{-4} = 1/(5 \times 10^{-2})^{-4} (4 \times 10^{-2})^{-2}$ $2 = 2^{-5} m = 1$	
a) 1 st	
b) Ø d) Rate = k[(CH3)3(B1)]	
c) 1st	
e) 4x10-6 mol/2mm = k (1x10-imol/2) k = 4x10-5 min-1	7
f) $t_{1/a} = \frac{0.693}{k} = \frac{0.693}{4 \times 10^{-5}} = 17325 \text{mm}$	

Example:

The decomposition of ozone in the upper atmosphere to dioxygen occurs by a twostep mechanism. The first step is a fast reversible step and the second is a slow reaction between an oxygen atom and an ozone molecule:

Step 1:	$O_3(g) \longleftrightarrow O_2(g) + O(g)$	Fast equilibrium
Step 2:	$O_3(g) + O(g) \rightarrow 2O_2(g)$	Slow

- a. Which is the rate determining step?
- c. Write the rate equation for the overall reaction.

a) Step 2 (slowest step)

b) Rate = $k[0_3][0_3]$ $K = \frac{[0][0_3]}{[0_3]}$ $K = \frac{[0][0_3]}{[0_3]}$ $K = \frac{[0][0_3]}{[0_3]^2}$